Journal of Organometallic Chemistry, 393 (1990) 119–129 Elsevier Sequoia S.A., Lausanne JOM 20847

Synthese und strukturelle Charakterisierung von Übergangsmetallsulfidclustern mit Cp^{*}Mo- (Cp^{*} = C_5 Me₅), CuCl- und Fe(NO)-Baugruppen

Henri Brunner, Roland Graßl, Joachim Wachter, *

Institut für Anorganische Chemie der Universität Regensburg, Universitätsstraße 31, D-8400 Regensburg (B.R.D.)

Bernd Nuber und Manfred L. Ziegler

Anorganisch-chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg (B.R.D.)

(Eingegangen den 19. Februar 1990)

Abstract

The reaction of $Cp_2^*Mo_2S_4$ (1) $(Cp^* = \eta^5 - C_5Me_5)$ with CuCl gives the polynuclear clusters of $Cp_2^*Mo_2CuClS_4$ (2, 4) and $Cp_2^*Mo_2Cu_2Cl_2S_4$ (3, 5) under expansion of the Mo-S skeleton. The structures of these clusters are determined by the structures of the Mo-substrates (1A + CuCl $\rightarrow 2 + 3$; 1C + CuCl $\rightarrow 3 + 5$), thus permitting elucidation of the reaction pathway. The 62e-cluster 3 possesses a distorted cuban-like M_4S_4 core with 5 M-M bonds as shown by an X-ray diffraction study. One or two CuCl moieties are replaced by Fe(NO) when 3 is irradiated in the presence of $[N(PPh_3)_2][Fe(CO)_3NO]$. In a metathetical reaction with NaSPh, 3 gives $Cp_2^*Mo_2Cu_2(SPh)_2S_4$ (8).

Zusammenfassung

Die Reaktion von $Cp_2^*Mo_2S_4$ (1) ($Cp^* = \eta^5 - C_5Me_5$) mit CuCl führt unter Expansion des Mo-S-Gerüsts zu den Mehrkernclustern $Cp_2^*Mo_2CuClS_4$ (2, 4) und $Cp_2^*Mo_2Cu_2Cl_2S_4$ (3, 5). Der Aufbau der Cluster hängt von der Struktur der Mo-Substrate ab ($1A + CuCl \rightarrow 2 + 3$; $1C + CuCl \rightarrow 3 + 5$) und ermöglicht somit eine detaillierte Diskussion des Reaktionsverlaufs. Der 62e-Cluster 3 besitzt auf Grund einer Röntgenstrukturanalyse einen verzerrt würfelförmigen M_4S_4 -Kern mit fünf M-M-Bindungen. Durch Photolyse von 3 und $[N(PPh_3)_2][Fe(CO)_3NO]$ sind ein bzw. zwei CuCl-Baugruppen gegen Fe(NO) substituierbar. In einer Metathesereaktion ergibt 3 mit NaSPh $Cp_2^*Mo_2Cu_2(SPh)_2S_4$ (8).

Sulfidverbrückte Übergangsmetallcluster mit einem M_4S_4 -Kern sind nicht nur aus prinzipiellem strukturellen Interesse in großer Zahl dargestellt worden [1]. Synergetische Effekte in bimetallischen $M_2M'_2S_4$ -Clustern machen diese als Modellsysteme und sogar als Katalysatorvorstufen für die bei der HDS-Katalyse an der Metallsulfidoberfläche ablaufenden Reaktionen interessant [2].

Für den gezielten Aufbau von $M_2M'_2S_4$ -Clustern auf der Basis von $Cp^*_2M_2S_4$ -Komplexen der Chromtriade [3] und $(MeC_5H_4)_2V_2S_4$ [4] bieten sich Gerüstexpansionsreaktionen an. Durch Koordination ungesättigter Metalligand-Fragmente an Schwefelbrücken wird deren Konnektivität und somit die Nuklearität des Startkomplexes erhöht. Durch Umlagerung des Metallsulfidgerüsts gelangt man dann zum gewünschten Cluster. Auf diesem Weg wurden bisher C_5R_5M - (R = H, Me), (CO)_nM- (n = 1-3) und (NO)M-Fragmente, nicht jedoch MHal-Fragmente zu Clustern mit einem M₄S₄-Kern umgesetzt [5].

Wir berichten nunmehr über die Synthese von drei- und vierkernigen Mo-Cu-Clustern durch Reaktion von $Cp_2^{*}Mo_2S_4$ [3a] in seinen verschiedenen isomeren Formen 1A-C (Schema 1) mit CuCl. Ferner werden erste Studien über die Reaktivität des resultierenden Clustergerüsts und seiner Ligandensphäre angestellt.

Präparative Ergebnisse im System Cp^{*}₂Mo₂S₄/CuCl

Die Umsetzung von $Cp_2^*Mo_2(\mu, \eta^2-S_2)(\mu-S)_2$ (1A) mit 2 Moläquivalenten CuCl bei Raumtemperatur (Toluol, 4 h) führt in 51% Ausbeute zu der grünen Verbindung $Cp_2^*Mo_2CuClS_4$ (2). Daneben entsteht ein dunkelblauer, in allen gängigen Solventien außer Acetonitril unlöslicher Feststoff. Dieser reagiert in Acetonitril zu einer dunkelgrünen Lösung, aus der sich grüne Kristalle der Zusammensetzung $Cp_2^*Mo_2Cu_2Cl_2S_4$ (3) isolieren lassen. Während sich der dunkelblaue Feststoff auf Grund seiner Unlöslichkeit einer näheren Charakterisierung entzog, konnte die Zusammensetzung von 2 und 3 elementaranalytisch zweifelsfrei bestimmt werden. Die von 2 und 3 aufgenommenen FD-Massenspektren (CH_2Cl_2 - bzw. CH_3CN -Lösung) sind dagegen trotz unterschiedlicher Nuklearität weitgehend identisch. So treten neben dem Molekülpeak der Vierkernspezies (m/e 788) weitere Massenpeaks bei m/e 688 und 590 auf, die den Zusammensetzungen $Cp_2^*Mo_2CuClS_4$ und $Cp_2^*Mo_2S_4$ entsprechen. Das Intensitätsverhältnis für diese Massenpeaks beträgt in beiden Fällen ca. 1/2.5/1.

Die Reaktion von $Cp_2^*Mo_2(\mu, \eta^2-S_2)S_2$ (1B) mit CuCl erfordert eine auf 100 °C gesteigerte Temperatur (Toluol, 18 h). Beim Einsatz von 2 Moläquivalenten CuCl bildet sich neben einem rotbraunen Dreikernkomplex der Zusammensetzung $Cp_2^*Mo_2CuClS_4$ (4) (9% Ausbeute) der grüne Cluster 3 in 81% Ausbeute.

Schema 1

Die analoge Reaktion von $Cp_2^*Mo_2(\mu-S)_2S_2$ (1C) liefert ebenfalls 3, jedoch in lediglich 42% Ausbeute. Zusätzlich wurde bei der Aufarbeitung dieses Ansatzes eine rotbraune Verbindung 5 der gleichen Zusammensetzung wie 3 in 39% Ausbeute isoliert.

Untersuchungen zum Komplextyp Cp^{*}₂Mo₂CuClS₄

Informationen zum strukturellen Aufbau der Dreikernkomplexe 2 und 4 lassen sich aus den IR-Spektren und den Strukturen ihrer Vorläuferkomplexe 1A-C gewinnen. Wenig informativ sind dagegen die ¹H-NMR-Spektren (Tab. 1), aus

	$\delta(^{1}\mathrm{H})^{a}$		δ(⁹⁵ Mo) ^b	
	CH ₃	C ₆ H ₅		
2	s, 2.21		209 (105)	
3	s, 2.09		287 (135)	
4	s, 2.09		536 (135)	
5	s, 2.09		289 °	
7	s, 1.96		- 470 (70)	
8	s. 1.98	m, 7.2	267 (270)	

 Tabelle 1

 NMR-spektroskopische Daten der Komplexe 2–5. 7. 8

^a CDCl₃-Lösung, ⁱTMS. ^b CH₂Cl₂-Lösung; in Klammern: Linienbreite in Hz. ^c Linienbreite nicht exakt bestimmbar.

denen sich lediglich auf die Präsenz einer Symmetrieebene senkrecht zum Mo-Mo-Vektor schließen läßt.

Das IR-Spektrum von 2 enthält eine schwache, jedoch charakteristische Absorption bei 523 cm⁻¹, die einer ν (S–S)-Schwingung zugeordnet wird [6]. Die Addition einer CuCl-Einheit erfolgt somit an eine der beiden stärker nukleophilen Monosulfidbrücken von 1A. Die koordinative Stabilisierung des CuCl-Fragments durch die zweite Monosulfidbrücke führt dann zu einer trigonalen Bipyramide mit zwei μ_3 -S-Liganden an den Spitzen, sowie den Metallzentren an den Ecken der Basisdreiecksfläche. Side-on an beide Molybdänatome ist die Disulfidbrücke gebunden. Auf diese Weise erhalten Molybdän und Kupfer abgeschlossene Schalen bei einer formalen Oxidationsstufe von +4 bzw. +1. Für den isoelektronischen Dreikerncluster Cp^{*}₂Mo₂Fe(CO)₂S₄ konnte der gleiche Strukturtyp bewiesen werden [7].

Das trigonal-bipyramidale Strukturmotiv dürfte auch für 4 gelten. In diesem Fall deutet eine starke IR-Absorption bei 463 cm⁻¹ (Schulter bei 446 cm⁻¹) auf Mo=S-Baugruppen hin. Terminale Schwefelliganden liegen auch in 1B und 1C vor, sie absorbieren im IR-Spektrum im in etwa gleichen Bereich. Diese Interpretation wird gestützt durch die Beobachtung, daß sich 2 in CHCl₃ bei 60°C innerhalb von zwei Stunden fast quantitativ in 4 umwandelt. Die Umwandlung der η^2 -S₂-Brücke in zwei terminale Schwefelliganden ist eine intramolekulare Redoxreaktion, die auch bei der thermischen Umwandlung von 1A nach 1B und schließlich 1C abläuft. Auch die ⁹⁵Mo-NMR-Spektren (Tab. 1) deuten die Öffnung der Disulfidbrücke im Zuge der Isomerisierung von 2 nach 4 durch eine Tieffeldverschiebung von Δ 327 ppm an [8].

Der Komplextyp Cp^{*}₂Mo₂Cu₂Cl₂S₄

Für 62e-Cluster mit dem M_4S_4 -Kern wird gemeinhin eine verzerrte Pseudocubanstruktur angenommen, wobei die Metallzentren, bedingt durch das Vorliegen von nur fünf M-M-Bindungen, schmetterlingsartige Anordnung einnehmen. Erstmals konnten für einen derartigen Verbindungstyp zwei Isomere, nämlich 3 und 5, isoliert werden. Typisch für 3 sind IR-Absorptionsbanden bei 450 (m) und 392 (m) cm⁻¹, die nach bisherigen Erfahrungen und unter Berücksichtigung der Röntgenstrukturanalyse (s.u.) als μ_3 -M-S-Gerüstschwingungen interpretiert werden. Eine schwache Absorption bei 330 cm⁻¹ wird einer Cu-Cl-Schwingung zugeordnet. Das IR-Spektrum von 5 unterscheidet sich von dem von 3 durch Absorptionen bei 500 (m), 392 (m) und 330 (w) cm⁻¹. In den ⁹⁵Mo-NMR-Spektren von 3 und 5 ist ebenso wie in den ¹H-NMR-Spektren kein signifikanter Unterschied der chemischen Verschiebungen erkennbar (Tab. 1). Die ⁹⁵Mo-Verschiebungen liegen jedoch in einem für 62e-M₂M₂S₄-Cluster überraschenden Bereich. Zum Beispiel betragen die δ (Mo)-Werte für Cp^{*}₂Mo₄(CO)₆S₄ und Cp^{*}₂Mo₂Fe₂(CO)₄S₄ - 558 und -1256 ppm bzw. -506 ppm [8].

Die endgültige Strukturzuordnung per Röntgenstrukturanalyse gelang bis jetzt nur für 3 an einem aus CH₃CN gezogenen Einkristall. Demnach ist das Molekül charakterisiert durch eine "butterfly"-artige Anordnung der vier Metallzentren, mit zwei Molybdänatomen in der Rumpfachse und zwei Kupferatomen an den Flügelspitzen (Fig. 1, Tab. 2, 3). Durch die Plazierung der Schwefelatome als μ_3 -Brücken über den Metalldreiecken kann der Cluster als verzerrtes Cuban mit

Fig. 1. Molekülstruktur von Cp^{*}₂Mo₂Cu₂Cl₂S₄ (3) (ORTEP-Zeichnung).

angenäherter C_{2v} -Symmetrie beschrieben werden. Zu 3 analoge Strukturen wurden für die isoelektronischen Cluster $(MeC_5H_4)_2Mo_2Ni_2(CO)_2S_4$ [9] und $Cp^*_2Mo_2Fe_2$ (CO)₄S₄ [7] beschrieben.

Typisch für diese 62e-Cluster ist eine Abnahme der Bindungsstärke in der Reihenfolge Mo-Mo > Mo-M' > M'-M', wobei M' für die 3*d*-Metalle Fe und Ni steht. Dies rührt daher, daß bei der Besetzung der antibindenden Orbitale zunächst die 3*d*-Metalle berücksichtigt werden [10]. In Übereinstimmung hiermit findet man

Tabelle 2

Ausgewählte Bindungslängen (Å) und -winkel (°) für $Cp_2^*Mo_2Cu_2Cl_2S_4$ (3)

2.865(1)	Mo(2)-Cu(1)	2.792(2)				
2.794(2)	Mo(2)-Cu(2)	2.792(2)				
2.775(2)	Mo(2)-S(2)	2.343(4)				
2,224(4)	Mo(2)-S(3)	2.343(3)				
2.324(3)	Mo(2)-S(4)	2.222(3)				
2.339(4)						
2.413(4)	Cu(2)-S(1)	2.398(4)				
2.269(4)	Cu(2)-S(2)	2.259(4)				
2.422(3)	Cu(2)-S(4)	2.416(4)				
2,106(5)	Cu(2)-Cl(2)	2.160(4)				
3.058(3)						
59.1(1)	Mo(1)-Cu(1)-Mo(2)	61.7(1)				
66.6(1)	Cu(2)-Cu(1)-S(3)	96.8(1)				
100.3(1)	Cu(2)-Cu(1)-Cl(1)	138.8(1)				
106.4(1)	S(1)-Cu(1)-S(3)	102.5(1)				
101.2(1)	S(1)-Cu(1)-S(4)	98.6(1)				
	2.865(1) 2.794(2) 2.775(2) 2.224(4) 2.324(3) 2.339(4) 2.413(4) 2.413(4) 2.422(3) 2.106(5) 3.058(3) 59.1(1) 66.6(1) 100.3(1) 106.4(1) 101.2(1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Tabelle 3

Atom	x	у	z	U_{eq}	
Mo(1)	0,39943(3)	0.16471(12)	0.31481(6)	0.024(1)	
Mo(2)	0.33614(3)	0.33109(12)	0.22589(6)	0.024(1)	
Cu(1)	0.39909(5)	0.29876(19)	0.16417(10)	0.050(1)	
Cu(2)	0.34289(5)	0.07737(18)	0.16724(10)	0.042(1)	
S(1)	0.4118(1)	0.0708(4)	0.2025(2)	0.034(1)	
S(2)	0.3342(1)	0.1307(4)	0.2952(2)	0.032(1)	
S(3)	0.4006(1)	0.3912(3)	0.2926(2)	0.032(1)	
S(4)	0.3305(1)	0.2825(3)	0.0889(2)	0.031(1)	
Cl(1)	0.4284(1)	0.3794(4)	0.0764(2)	0.050(1)	
Cl(2)	0.3119(1)	-0.0771(4)	0.0828(2)	0.046(1)	
C(1)	0.4094(4)	0.0310(13)	0.4385(7)	0.034(5)	
C(2)	0.4174(3)	0.1636(15)	0.4680(7)	0.035(5)	
C(3)	0.4499(4)	0.2050(13)	0.4461(7)	0.035(5)	
C(4)	0.4623(4)	0.0988(15)	0.4056(7)	0.037(5)	
C(5)	0.4374(4)	- 0.0075(14)	0.3997(8)	0.037(5)	
C(6)	0.3798(4)	-0.0601(14)	0.4555(8)	0.049(6)	
C(7)	0.3972(4)	0.2392(15)	0.5235(8)	0.051(6)	
C(8)	0.4704(4)	0.3348(13)	0.4734(13)	0.045(6)	
C(9)	0.4984(4)	0.0934(17)	0.3762(9)	0.053(6)	
C(10)	0.4421(4)	-0.1451(13)	0.3679(8)	0.048(6)	
C(11)	0.2709(4)	0.4132(16)	0.1847(9)	0.049(6)	
C(12)	0.2933(4)	0.5067(14)	0.1640(8)	0.035(5)	
C(13)	0.3212(4)	0.5534(14)	0.2387(9)	0.040(6)	
C(14)	0.3161(4)	0.4888(14)	0.3116(8)	0.040(5)	
C(15)	0.2853(4)	0.3948(14)	0.2802(9)	0.048(6)	
C(16)	0.2374(4)	0.3336(19)	0.1231(12)	0.084(8)	
C(17)	0.2855(5)	0.5614(15)	0.0729(8)	0.059(7)	
C(18)	0.3475(4)	0.6631(14)	0.2456(11)	0.062(7)	
C(19)	0.3382(5)	0.5150(18)	0.4065(8)	0.077(8)	
C(20)	0.2690(5)	0.3091(19)	0.3368(11)	0.084(10)	
C(21)	0.0000	0.1616(34)	0.2500		
C(22)	0.0000	0.0351(31)	0.2500		
N(23)	0.0182(8)	0.2572(31)	0.2901(19)		

Atomkoordinaten und Temperaturfaktoren von 3. CH₃CN

in 3 fünf Metall-Metall Bindungen. Der Abstand der beiden Kupferatome von 3.058 Å liegt außerhalb des Bereichs bindender Wechselwirkungen (Tab. 2). Auffallend ist eine gewisse Kompression des Clustergerüsts um 0.11-0.15 Å in Richtung des Mo(1)-S(1)-Vektors unter Einschluß der entsprechenden Cu-S-Bindungen. Eine derartige Verkürzung wird in $Cp^*_2Mo_2Fe_2(CO)_4S_4$ [7] nicht beobachtet.

Ein möglicher Strukturvorschlag für 5 basiert auf einer planaren Grundanordnung der vier Metallzentren. Der Schwefel überspannt als μ_3 -Brücke gedachte Mo₂Cu-Dreiecke jeweils unterhalb und oberhalb dieser Ebene. So ergibt sich eine planare Anordung der Metallatome, die sich aus zwei über eine gemeinsame Mo-Mo-Kante verknüpfte trigonale Bipyramiden zusammensetzt. Einen hierzu ähnlichen Strukturtyp verkörpert (MeC₅H₄)₂Mo₂Fe₂(CO)₆S₄ [11]. Beim Vorliegen von fünf Metall-Metall-Bindungen erhalten die Molybdän- und Kupferzentren jeweils 18 Außenelektronen, sowie die formalen Oxidationsstufen +5 und +1. Andere Elektronenkonfigurationen wären möglich, aufgrund des Diagmagnetismus

von 5 ist jedoch die beschriebene mit abgeschlossenen Schalen am wahrscheinlichsten.

Der Strukturvorschlag wird dadurch gestützt, daß 5 nur aus 1C zugänglich ist. Vorstellbar wäre z.B. die gleichzeitige Addition zweier CuCl-Einheiten an die Sulfidbrücken von 1C, die aus stereochemischen Gründen transoid ablaufen sollte. Ausgehend von dem Addukt $1C \cdot 2CuCl$ wären nur relativ kleine Umlagerungen erforderlich um zu 5 zu gelangen (Schema 2). Die Dreikerncluster 2 und 4 reagieren mit überschüssigem CuCl nicht oder nur langsam zu 5 ab.

Reaktivitätsstudien an 3

Die Photolyse von 3 und $[N(PPh_3)_2][Fe(CO)_3NO]$ in THF ergibt die braunen Cluster $Cp_2^{\star}Mo_2Cu(Cl)Fe(NO)S_4$ (6) und $Cp_2^{\star}Mo_2Fe_2(NO)S_4$ (7) (Gl. 1a). Die CuCl-Baugruppen können somit stufenweise gegen Fe(NO)-Einheiten ausgetauscht werden. Während 7 besser aus 1A und $[N(PPh_3)_2][Fe(CO)_3NO]$ dargestellt wird [12], beansprucht 6 aufgrund seiner Bindungssituation (61 Valenzelektronen) Interesse. Da 60e-Cluster mit dem M4S4-Kern sechs M-M-Bindungen aufweisen und alle bindenden Metall-Ligand-Orbitale besetzt sind, werden neu hinzukommende Elektronen in antibindende Orbitale mit Metallcharakter gefüllt. Dies läßt sich z.B. bei der Reduktion von $Fe_4(NO)_4S_4$ zu einem Monoanion beobachten [13]. Aus den Bindungsparametern konnte für letzteren Fall auf eine Delokalisierung des zusätzlichen Elektrons über den gesamten Metallkern geschlossen werden. In heterogen zusammengesetzten M₄S₄-Clustern werden dagegen zunächst die antibindenden Orbitale der 3d-Metalle berücksichtigt, was experimentell u.a. an 3 bewiesen werden konnte. In diesem Sinn kann auch das von 6 erhaltene ESR-Signal (X-Band, Gerät Bruker ER 220 D), das bei 20°C in CH₂Cl₂-Lösung ein Singulett bei g = 2.036 enthält, interpretiert werden. Da keine Feinstruktur beobachtet werden kann, ist eine Lokalisierung des ungepaarten Elektrons an den kernspin-aktiven Cubzw. Mo-Zentren wohl auszuschließen, und es dürften höchstens schwache Fe-Cu-Wechselwirkungen bestehen.

Der Ligandenaustausch am M_4S_4 -Gerüst wurde exemplarisch durch Reaktion von 3 mit Natriumthiophenolat untersucht. Hierzu wurde eine grüne Suspension von 3 in CH₃CN mit NaSPh im Molverhältnis 1/2 versetzt. Nach 20 h Reaktionsdauer bei Raumtemperatur wurde Cp^{*}₂Mo₂Cu₂(SPh)₂S₄ (8) als einziges Produkt in 82% Ausbeute isoliert (Gl. 1b). Elementaranalysen und FD-Massen-

spektrum bestätigen, daß die beiden am Kupfer gebundenen Chloro-Liganden durch jeweils einen Thiophenolat-Liganden substituiert wurden. Das IR-Spektrum von 8 enthält wie dasjenige von 3 typische Gerüstschwingungen bei 450 (m) and 392 (m) cm⁻¹. Dagegen fehlt die in 3 vorhandene Absorption bei 330 cm⁻¹, die hiermit als Cu-Cl-Schwingung interpretiert werden könnte. Die Auswirkungen des Ligandenaustausches auf die ⁹⁵Mo-NMR-Spektren sind minimal. δ (Mo) ist im substituierten Cluster mit 267 ppm im Vergleich zum Edukt nur um 20 ppm zu höherem Feld verschoben.

Experimenteller Teil

Alle Arbeiten wurden unter Luft und Feuchtigkeitsausschluß und unter Verwendung von trockenen, N₂-gesättigten Lösungsmitteln durchgeführt. Als stationäre Phasen bei den Säulenchromatographien dienten N₂-beladenes Kieselgel 60 (Silitech der Firma ICN Biomedicals) und Kieselgel 60 silanisiert (Merck, Darmstadt), beide mit den Korngrößen 63–200 μ m. Die ⁹⁵Mo-Spektren wurden an einem Bruker WM 250 Spektrometer gegen Na₂MoO₄ als externer Standard gemessen [8]. Cp^{*}₂Mo₂S₄ (1A, B) [3a] und [N(PPh₃)₂][Fe(CO)₃NO] [14] wurden nach Literaturangaben hergestellt. Für die Darstellung von 1C [3a] wurde eine neue Methode aus [Cp^{*}Mo(CO)₃]₂ und Schwefel bei 100 °C entwickelt (s.u.). Die Durchführung der Elementaranalysen (C, H, N) erfolgte im mikroanalytischen Laboratorium der Fakultät für Chemie und Pharmazie der Universität Regensburg.

Darstellung von $Cp^*_2Mo_2(\mu-S)_2S_2$ (1C)

Eine Lösung von 1.30 g (2.06 mmol) $[Cp^*Mo(CO)_3]_2$ und 397 mg (1.55 mmol) S₈ in 120 ml Toluol wird 16 h bei 100 °C gerührt. Die auf ca. 20 ml konzentrierte Reaktionslösung wird über Filterflocken filtriert und an SiO₂ mit Toluol als

Laufmittel chromatographiert. Es entwickelt sich eine dunkelbraune Zone, die 1.05 g an $Cp_2^*Mo_2(\mu-S)_2S_2$ (86%) enthält.

Die Reaktionen von $Cp^*_2Mo_2S_4$ (1) mit CuCl

(a) Umsetzung von $Cp^*_2 Mo_2(\mu, \eta^2 - S_2)(\mu - S)_2$ (1A). Die blaue Lösung von 411 mg (0.69 mmol) 1A in 50 ml Toluol wird nach Zugabe von 138 mg (1.39 mmol) CuCl 4 h bei Raumtemperatur gerührt. Der gebildete grüne Niederschlag wird abgesaugt und mit Toluol gewaschen. Nach Extraktion des Rückstandes mit CH₂Cl₂ verbleibt ein dunkelblauer Feststoff (Aufarbeitung s.u.). Die grüne Extraktionslösung wird nach Konzentration auf ca. 20 ml zur weiteren Reinigung über SiO₂ (3 × 3.5 cm) filtriert, wobei mit Et₂O nachgewaschen wird. Nach Abziehen des Lösungsmittels erhält man 242 mg Cp^{*}₂Mo₂CuClS₄ (2) (51% Ausbeute) als grünes Pulver. Der im Anschluß an obige Extraktion verbliebene dunkelblaue Rückstand wird mit CH₃CN extrahiert, nach Einengen der nunmehr grünen Lösung erhält man Cp^{*}₂Mo₂Cu₂Cl₂S₄ (3) als grüne parallelepipedische Kristalle. Elementaranalysen: 2: Gef.: C, 34.77; H, 4.45. C₂₀H₃₀ClCuMo₂S₄ (688.6) ber.: C, 34.81; H, 4.38%. Molmasse 680 (bzgl. ⁹²Mo; FD-MS aus CH₂Cl₂), aber auch *m/e* 788 (s. Text). 3: Gef.: C, 29.92; H, 3.82. C₂₀H₃₀Cl₂Cu₂Mo₂S₄ (788.6) ber.: C, 30.33; H, 3.82%. Molmasse 788 (Schwerpunkt; FD-MS aus CH₃CN) und *m/e* 688 ([*M* - CuCl]⁺, s. Text).

(b) Umsetzung von $Cp^*_2 Mo_2(\mu, \eta^2 \cdot S_2)S_2$ (1B). Die grünbraune Lösung von 306 mg (0.52 mmol) 1B und 103 mg (1.04 mmol) CuCl in 100 ml Toluol wird 19 h bei 100 °C gerührt. Der gebildete grüne Niederschlag wird abfiltriert, mit Toluol gewaschen und in ca. 20 ml CH₂Cl₂ gelöst. Bei der Chromatographie an silanisiertem SiO₂ (2 × 22 cm) eluiert man zunächst mit Toluol/CH₂Cl₂ 3/1 rotbraunes Cp^{*}₂Mo₂CuClS₄ (4) (33 mg, 9% Ausbeute) und dann mit Toluol/CH₂Cl₂ 1/1 Cp^{*}₂Mo₂Cu₂Cl₂S₄ (3) als dunkelgrüne Zone (331 mg, 81% Ausbeute). Elementaranalyse: 4: Gef.: C, 34.80; H, 4.50. C₂₀H₃₀ClCuMo₂S₄ (688.6) ber: C, 34.81; H, 4.38%. Molmasse 680 (bzgl. ⁹²Mo; FD-MS aus CH₂Cl₂).

(c) Umsetzung von $Cp_{2}^{*}Mo_{2}(\mu-S)_{2}S_{2}$ (1C). Erhitzen der rotbraunen Lösung von 377 mg (0.64 mmol) 1C und 127 mg (1.28 mmol) CuCl in 100 ml Toluol (100 °C, 19 h) ergibt nach Abziehen des Lösungsmittels ein braungrünes Rohprodukt, das zur weiteren Reinigung in CH₂Cl₂ gelöst und an silanisiertem SiO₂ (2 × 22 cm) chromatographiert wird. Mit Toluol/CH₂Cl₂ 2/1 wird Cp₂*Mo₂Cu₂Cl₂S₄ (5) als rotbraune Zone (197 mg, 39% Ausbeute) und mit Toluol/CH₂Cl₂ 1/1 3 (212 mg, 42% Ausbeute) als dunkelgrüne Zone eluiert. Elementaranalyse: 5: Gef.: C, 29.92; H, 3.92. C₂₀H₃₀Cl₂Cu₂Mo₂S₄ (788.6) ber.: C, 30.33; H, 3.82%. Molmasse 788 (Schwerpunkt, FD-MS aus CH₂Cl₂).

Reaktion von Cp^* , $Mo_2Cu_2Cl_2S_4$ (3) mit $[N(PPh_3)_2][Fe(CO)_3NO]$

Eine Suspension von 586 mg (0.74 mmol) 3 und 520 mg (0.72 mmol) [N(PPh₃)₂][Fe(CO)₃NO] in 230 ml THF wird 3 h bestrahlt (Hg-Hochdruckbrenner TQ 150 der Fa. Heraeus, Hanau). Nach Abziehen des Lösungsmittels extrahiert man aus dem braunen Rohprodukt mit Toluol alle löslichen Produktkomponenten. Die auf ca. 10 ml konzentrierte braune Extraktionslösung chromatographiert man mit Toluol an silanisiertem SiO₂ (2 × 22 cm). Nach einer braunen Zone, die Cp^{*}₂Mo₂Fe₂(NO)₂S₄ (7) [12] in 21% Ausbeute enthält, läßt sich eine weitere braune Zone mit CH₂Cl₂ eluieren, die Cp^{*}₂Mo₂CuClFe(NO)S₄ (6) in 10% Ausbeute enthält. IR (cm⁻¹, KBr): 6: ν (NO) 1734, 1708; 7: ν (NO) 1738, 1722 (sh), 1705 (sh). Elementaranalyse: 6: Gef.: C, 31.08; H, 3.87; N, 1.61. $C_{20}H_{30}ClCuFeMo_2NOS_4$ (775.4) ber.: C, 30.98; H, 3.90; N, 1.81%. Molmasse 771 (Schwerpunkt; FD-MS aus Toluol).

Darstellung von $Cp^*_2Mo_2Cu_2(SC_6H_5)_2S_4$ (8)

Die grüne Suspension von 172 mg (0.22 mmol) 3 in 100 ml CH₃CN wird mit 1.74 ml einer 0.25 *m* methanolischen Natriumthiophenolat-Lösung (0.34 mmol) versetzt und 20 h bei Raumtemperatur gerührt. Nach Einengen der nunmehr braunen Suspension auf ca. 20 ml werden ungelöste Bestandteile abfiltriert und mit ca. 40 ml CH₃CN gewaschen. Der verbleibende Rückstand wird in CH₂Cl₂ gelöst und an silanisiertem SiO₂ (2 × 22 cm) chromatographiert. Mit CH₂Cl₂ eluiert man eine braune Zone, die 167 mg 8 (82% Ausbeute) liefert. Durch Umkristallisation aus CH₂Cl₂/CH₃CN 3: 1 erhält man dunkelbraune, balkenförmige Kristalle. Elementaranalyse: 8: Gef.: C, 41.06; H, 4.23. C₃₂H₄₀Cu₂Mo₂S₆ (935.7) ber.: C, 41.01; H, 4.31%. Molmasse 936 (Schwerpunkt; FD-MS aus CH₂Cl₂).

Röntgenographische Daten von Komplex $3 \cdot CH_3CN$

Schwarzgrüner Kristall (0.15 × 0.20 × 0.25 mm³), monoklin C_{2h}^6 -C2/c; Zellkonstanten: a 36.44(1), b 10.193(3), c 16.202(3) Å, β 108.06(3)°; V 5721.46 Å³, Z = 8; empirische Absorptionskorrektur (psi-scan Messung: 6 Reflexe 11 < 2 θ < 44°. Transmiss. Fakt. (min/max) 0.84/1.00), μ 27.91 cm⁻¹. F(000) 3195, d(röntg) = 1.87 g cm⁻³; AED II der Fa. Siemens-Stoe [15]. Mo- K_{α} -Strahlung, Graphit-Monochromator, im vermessenen Bereich 6647 mögliche Reflexe, 3261 ≥ 2 $\sigma(I)$, unabhängige 2849 ($I > 2.5\sigma(I)$). Die Struktur wurde gelöst mittels Patterson-, Fourier- und Differenzfouriersynthesen; alle Nichtwasserstoffatome wurden nach der Methode der kleinsten Quadrate anisotrop verfeinert, die H-Atome mit Hilfe des SHELXTL-Unterprogramms HFIX [16] fixiert; $R_{anisotrop} = 0.052$, $R_w = 0.046$; Restelektronendichte (max/min) 0.80/-1.0 e/Å³, shift/esd (mean/max) 0.07/0.69, GOOF = 2.05.

Dank

Wir danken Herrn Dr. T. Burgemeister für die Aufnahme der ⁹⁵Mo-Spektren und Frau A. Riedel für das ESR-Spektrum von Komplex 6.

Literatur

- 1 H. Vahrenkamp, Angew. Chem., 87 (1985) 363; Angew. Chem. Int. Ed. Engl., 14 (1975) 322.
- 2 R.D. Adams, J.E. Babin und M. Tasi, Polyhedron, 7 (1988) 2263; M.D. Curtis, J.E. Penner-Hahn, J. Schwank, O. Baralt, D.J. McCabe, L. Thompson und G. Waldo, ibid., 7 (1988) 2411.
- 3 (a) H. Brunner, W. Meier, J. Wachter, E. Guggolz, T. Zahn und M.L. Ziegler, Organometallics, 1 (1982) 1107; (b) H. Brunner, J. Pfauntsch, J. Wachter, B. Nuber und M.L. Ziegler, J. Organomet. Chem., 359 (1989) 179.
- 4 C.M. Bolinger; T.B. Rauchfuss und S.R. Wilson, J. Am. Chem. Soc., 104 (1982) 7313; C.M. Bolinger, T.B. Rauchfuss und A.L. Rheingold, ibid., 105 (1983) 6321.
- 5 J. Wachter, Angew. Chem. 101 (1989) 1645; Angew. Chem. Int. Ed. Engl., 28 (1989) 1613.
- 6 A. Müller, W. Jaegermann und J.H. Enemark, Coord. Chem. Rev., 46 (1982) 245.
- 7 H. Brunner, N. Janietz, J. Wachter, T. Zahn und M.L. Ziegler, Angew. Chem., 97 (1985) 122; Angew. Chem. Int. Ed. Engl., 24 (1985) 133.

- 8 C.G. Young, M. Minelli, J. Enemark, G. Miessler, N. Janietz; H. Kauermann und J. Wachter, Polyhedron, 5 (1986) 407.
- 9 M.D. Curtis, P.D. Williams und W.M. Butler, Inorg. Chem., 27 (1988) 2835.
- 10 S. Harris, Inorg. Chem., 26 (1987) 4278.
- 11 B. Cowans, J. Noordik und M. Rakowski DuBois, Organometallics, 6 (1987) 995.
- 12 H. Brunner, H. Kauermann und J. Wachter, Angew. Chem., 95 (1983) 567; Angew. Chem. Int. Ed. Engl., 22 (1983) 549.
- 13 C.T.-W. Cho, F.Y.-K. Lo und L.F. Dahl, J. Am. Chem. Soc., 104 (1982) 3409.
- 14 N.G. Connelly und C. Gardner, J. Chem. Soc., Dalton Trans., 1976, 1525.
- 15 STRUCSY, Structure System Program Package, Fa. Stoe, Darmstadt, F.R.G., 1984.
- 16 G.M. Sheldrick, SHELXTL-Programm, Universität Göttingen, F.R.G., 1983.